Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Comput Biol Med ; 145: 105523, 2022 06.
Article in English | MEDLINE | ID: covidwho-1814279

ABSTRACT

Starting three decades ago and spreading rapidly around the world, acquired immunodeficiency syndrome (AIDS) is an infectious disease distinct from other contagious diseases by its unique ways of transmission. Over the past few decades, research into new drug compounds has been accompanied by extensive advances, and the design and manufacture of drugs that inhibit virus enzymes is one way to combat the AIDS virus. Since blocking enzyme activity can kill a pathogen or correct a metabolic imbalance, the design and use of enzyme inhibitors is a new approach against viruses. We carried out an in-depth analysis of the efficacy of atazanavir and its newly designed analogs as human immunodeficiency virus (HIV) protease inhibitors using molecular docking. The best-designed analogs were then compared with atazanavir by the molecular dynamics simulation. The most promising results were ultimately found based on the docking analysis for HIV protease. Several exhibited an estimated free binding energy lower than -9.45 kcal/mol, indicating better prediction results than the atazanavir. ATV7 inhibitor with antiviral action may be more beneficial for infected patients with HIV. Molecular dynamics analysis and binding energy also showed that the ATV7 drug had more inhibitory ability than the atazanavir drug.


Subject(s)
Atazanavir Sulfate , HIV Protease Inhibitors , Atazanavir Sulfate/pharmacology , Atazanavir Sulfate/therapeutic use , HIV Protease/chemistry , HIV Protease/metabolism , HIV Protease/therapeutic use , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/metabolism , HIV Protease Inhibitors/pharmacology , Molecular Docking Simulation
2.
Viruses ; 13(6)2021 06 21.
Article in English | MEDLINE | ID: covidwho-1282643

ABSTRACT

Proteolytic enzymes have great significance in medicine and the pharmaceutical industry and are applied in multiple fields of life sciences. Therefore, cost-efficient, reliable and sensitive real-time monitoring methods are highly desirable to measure protease activity. In this paper, we describe the development of a new experimental approach for investigation of proteolytic enzymes. The method was designed by the combination of recombinant fusion protein substrates and bio-layer interferometry (BLI). The protease (PR) of human immunodeficiency virus type 1 (HIV-1) was applied as model enzyme to set up and test the method. The principle of the assay is that the recombinant protein substrates immobilized to the surface of biosensor are specifically cleaved by the PR, and the substrate processing can be followed by measuring change in the layer thickness by optical measurement. We successfully used this method to detect the HIV-1 PR activity in real time, and the initial rate of the signal decrease was found to be proportional to the enzyme activity. Substrates representing wild-type and modified cleavage sites were designed to study HIV-1 PR's specificity, and the BLI-based measurements showed differential cleavage efficiency of the substrates, which was proven by enzyme kinetic measurements. We applied this BLI-based assay to experimentally confirm the existence of extended binding sites at the surface of HIV-1 PR. We found the measurements may be performed using lysates of cells expressing the fusion protein, without primary purification of the substrate. The designed BLI-based protease assay is high-throughput-compatible and enables real-time and small-volume measurements, thus providing a new and versatile approach to study proteolytic enzymes.


Subject(s)
Enzyme Assays/methods , HIV Protease/metabolism , HIV-1/enzymology , Interferometry/methods , Biosensing Techniques , Cloning, Molecular , HIV Protease/genetics , HIV Protease/isolation & purification , Humans , Kinetics , Proteolysis , Recombinant Proteins , Sequence Analysis, DNA , Substrate Specificity
3.
J Chem Inf Model ; 60(12): 5771-5780, 2020 12 28.
Article in English | MEDLINE | ID: covidwho-1065771

ABSTRACT

The novel coronavirus (SARS-CoV-2) has infected several million people and caused thousands of deaths worldwide since December 2019. As the disease is spreading rapidly all over the world, it is urgent to find effective drugs to treat the virus. The main protease (Mpro) of SARS-CoV-2 is one of the potential drug targets. Therefore, in this context, we used rigorous computational methods, including molecular docking, fast pulling of ligand (FPL), and free energy perturbation (FEP), to investigate potential inhibitors of SARS-CoV-2 Mpro. We first tested our approach with three reported inhibitors of SARS-CoV-2 Mpro, and our computational results are in good agreement with the respective experimental data. Subsequently, we applied our approach on a database of ∼4600 natural compounds, as well as 8 available HIV-1 protease (PR) inhibitors and an aza-peptide epoxide. Molecular docking resulted in a short list of 35 natural compounds, which was subsequently refined using the FPL scheme. FPL simulations resulted in five potential inhibitors, including three natural compounds and two available HIV-1 PR inhibitors. Finally, FEP, the most accurate and precise method, was used to determine the absolute binding free energy of these five compounds. FEP results indicate that two natural compounds, cannabisin A and isoacteoside, and an HIV-1 PR inhibitor, darunavir, exhibit a large binding free energy to SARS-CoV-2 Mpro, which is larger than that of 13b, the most reliable SARS-CoV-2 Mpro inhibitor recently reported. The binding free energy largely arises from van der Waals interaction. We also found that Glu166 forms H-bonds to all of the inhibitors. Replacing Glu166 by an alanine residue leads to ∼2.0 kcal/mol decreases in the affinity of darunavir to SARS-CoV-2 Mpro. Our results could contribute to the development of potential drugs inhibiting SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , HIV Protease Inhibitors/chemistry , HIV Protease/metabolism , SARS-CoV-2/drug effects , Amino Acid Sequence , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Biological Products/chemistry , Biological Products/pharmacology , Darunavir/chemistry , Darunavir/pharmacology , Databases, Factual , Drug Design , Glucosides/chemistry , Glucosides/pharmacology , HIV Protease Inhibitors/metabolism , HIV Protease Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Peptides/chemistry , Phenols/chemistry , Phenols/pharmacology , Protein Binding , Structure-Activity Relationship , Thermodynamics
4.
J Biomol Struct Dyn ; 39(15): 5368-5375, 2021 09.
Article in English | MEDLINE | ID: covidwho-631674

ABSTRACT

Initially, the SARS-CoV-2 virus was emerged from Wuhan, China and rapidly spreading across the world and urges the scientific community to develop antiviral therapeutic agents. Among several strategies, drug repurposing will help to react immediately to overcome the COVID-19 pandemic. In the present study, we have chosen two clinical trial drugs against HIV-1 protease namely, TMB607 and TMC310911 to use as the inhibitors of SARS-CoV-2 main protease (Mpro) enzyme. To make use of these two inhibitors as the repurposed drugs for COVID-19, it is essential to know the molecular basis of the binding mechanism of these two molecules with the SARS-CoV-2 Mpro. To understand the binding mechanism, we have performed molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations against the SARS-CoV-2 Mpro. The docking results indicate that both molecules form intermolecular interactions with the active site amino acids of Mpro enzyme. However, during the MD simulations, TMB607 forms strong interaction with the key amino acids of Mpro, and remains intact. The RMSD and RMSF values of both complexes were stable throughout the MD simulations. The MM-GBSA binding free energy values of both complexes are -43.7 and -34.9 kcal/mol, respectively. This in silico study proves that the TMB607 molecule binds strongly with the SARS-CoV-2 Mpro enzyme and it may be suitable for the drug repurposing of COVID-19 and further drug designing.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , HIV-1 , Pharmaceutical Preparations , HIV Protease/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL